If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+12k+1=0
a = 4; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·4·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{2}}{2*4}=\frac{-12-8\sqrt{2}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{2}}{2*4}=\frac{-12+8\sqrt{2}}{8} $
| 5w-5=3w+9 | | x-11/5=2 | | x/5=4,32 | | 3k+7=5k+3 | | 10k-6=3k+1 | | 4x–7=29–2x | | 8(3m+3)=-48 | | y2+7/3y+4/3=0 | | 45/36=5/n | | 11(p+4)=55 | | 8(m-6)=32 | | 5b-2b=32 | | 4x+12=2x+18x | | 11x-2=46 | | 4-3g=-5 | | x+70=-4 | | 3=9x-154 | | 16–z=17 | | 50-12x=6.8 | | 50-12y=6.8 | | 4(x+9)=2−6 | | 6+8=5x-7 | | 2p+24p=5p | | z/5+5=7 | | 14+6y=62y= | | 13s19;s=-6 | | 2x^+4x-6=0 | | 0,7x=8,4 | | 9+4w=6w | | 3^2+30s+50=0 | | 4m+5=33m= | | 5.5y=-20 |